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Generalised Strip Yield Crack Arrest Model for a Piezoelectric Strip
with Transverse Crack
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Abstract : A study is carried for arrest of opening of a crack and fatigue crack growth rate for
a piezoelectric ceramic strip weakened by a transverse, finite, hairline straight crack. A strip
yield model is considered under anti-plane shear stress and in-plane electric loading conditions.
The developed slide zone rims are subjected to quadratically varying yield point cohesive anti-
plane shear stress to arrest the crack from further opening. Fourier integral transform method is
employed, which reduces problem to the solution of Fredholm integral equation of second kind.
This integral equation in turn is solved numerically. Expressions are derived for the length of
slide zone, crack sliding displacement and crack growth rate. A qualitative study is presented
for the parameters affecting the opening of the crack with respect to the strip width, material
constants etc. in the form of the graphs. The results obtained are analyzed and conclusions are
drawn.
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Introduction
Ever search for light weight, strong,

durable and smart materials for technological
purposes have drawn attention towards the
poled piezoelectric materials. By now the
piezoelectric crystals have proven their wide
utility in medical technology, submarine
technology, electronic equipments etc. Its
wide utility has attracted researchers to
investigate the behavior of mechanics of
cracking for piezoelectric ceramics. A lot of
work has been reported on cracks in infinite
piezoelectric ceramics viz. Pak (1992), Dunn
(1994), Park and Sun (1995), Zhang et al.
(1996), Bhargava and Saxena (2005) to
quote few.

As the present paper deals with
cracked piezoelectric strip problem, an

attempt is made to discuss the development
of research on such types of problems
below:

Shindo et al. (1990) found singular
stress and electric fields for a cracked
piezoelectric strip. These studies are further
extended to investigate the electroelastic
intensification near the anti-plane shear crack
in an orthotropic piezoelectric ceramic strip
using theory of linear piezoelectricity by
Shindo et al. (1996). Narita and Shindo
(1998) proposed a generalized Dugdale
model for cracked piezoelectric ceramic strip
to study the fatigue crack growth rate under
anti-plane shear stress and in-plane electrical
loading conditions. Yu and Chen (1998)
studied the transient response of a cracked
infinite piezoelectric strip under anti-plane
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impact. Wang and Noda (2000) obtained
the solution of the generalized plane
deformation problem of a piezoelectric
material strip with crack using Laplace and
Fourier transforms method. Wang and Mai
(2002) dealt with the problem of a cracked
piezoelectric material strip under combined
mechanical and electrical loads. Both
permeable crack and impermeable crack
assumptions are considered by them. Wang
(2004) considered a mode-III crack
problem for functionally graded piezoelectric
material strip, for the case when mechanical
and electrical properties of the strip are
considered to be of the class of functions for
which the equilibrium equations have an
analytic solution. Zhang and Deng (2005)
formulated cohesive zone model for studying
crack initiation and crack propagation
phenomena. The method of determination of
the pre-fracture zone length and the crack
opening displacement for a plane-strain
problem of electrically permeable crack
located in a thin interlayer between two
identical piezoelectric materials is suggested
by Loboda et al. (2006). A finite mode-III
crack in a piezoelectric semiconductor of 6
mm crystals is analyzed by Hu et al. (2007)
using Fourier transform method.

A generalized Dugdale crack arrest
model solution is obtained in this paper for
a piezoelectric strip weakened by a
transverse straight crack, the developed slide
zones are arrested by anti-plane quadratically
varying yield point shear stress. Expressions
are derived for crack sliding zone and crack
sliding displacement. Crack growth rate is
also obtained under cyclic loading.

Mathematical Formulation
A poled piezoelectric strip occupies

oxyz plane. The strip is poled along oz

direction and is thick enough in z- direction
to allow the state of anti-plane shear (Fig. 1).
In this case the boundary value problem is
simplified considerably if one considers only
the out-of-plane displacement ui and in-plane
electric field Ei (i = x, y, z) such that
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The constitutive relations for transversely
isotropic piezoelectric ceramics may be
written as

...... (1)

...... (2)

...... (3)

...... (4)

...... (5)

...... (6)

where xzσ  and yzσ  are the shear
stresses, xD  and yD  are the electric
displacement components in x, y directions.
The elastic stiffness constant c44 is measured
in a constant electric field, the dielectric
constant ε11 is measured at constant strain
and piezoelectric constant is denoted by e15.
A comma implies the partial differentiation
with respect to the argument following it.

As is well-known the electric field
components are related to electric potential

φ  by

...... (7)

Constitutive equations for this case are
obtained by substituting values from
governing equations (3-6) into stress and
electric displacement equilibrium equations,

.
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Note that 
2 2

2
2 2x y

∂ ∂∇ ≡ +
∂ ∂  denotes the two- dimensional Laplacian operator.

Solution for equations (8, 9) may be written using Fourier integral transform method
and taking the inverse Fourier transform, as
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These may be written as

...... (8)

...... (9)

( ) ( ) ( ) ( ) ( ){ }1 2

0

2
( , ) cos cosh sin (10)yw x y A e x A x y d a yαα α α α α α

π

∞
−

∞= + +∫

( ) ( ) ( ) ( ) ( ){ }1 2

0

2
( , ) cos cosh sin (11)yx y B e x B x y d b yαφ α α α α α α

π

∞
−

∞= + −∫

where ( )iA α  and ( )iB α  (i=1, 2) are the unknown functions to be determined a∞  and

b∞ , are the arbitrary constants determined from the boundary conditions at infinity.

The Problem and Solution
A piezoelectric strip occupies the region

,h x h− ≤ ≤  
y−∞ < < ∞

 in oxyz
coordinate system (Fig.1) and is thick
enough in z-direction to allow the state of
anti-plane shear. The piezoelectric ceramic
strip exhibits symmetry of a hexagonal crystal
of class 6 mm with respect to principal x, y
and z axes. The strip is weakened by a finite,
hairline straight crack, L, the crack lies in the
interval 

, 0a x a y− ≤ ≤ =

. The edges of the
strip are stress and charge free. The infinite
boundary is subjected to anti-plane shear

stress 

τ ∞

 and in-plane electric load D∞  or

E∞  as the case may be. Consequently, the

crack yields both mechanically and
electrically. The ceramic of the strip being
mechanically more brittle a mechanical

singularity is encountered first. Consequently,
under small-scale yielding, a slide zone
protrudes ahead of each tip of the crack. The

slide zones  1Γ  and 2Γ  developed at the tips

- a and a occupy the intervals b x a− ≤ ≤ −
and 

a x b≤ ≤

; y=0, respectively. The rims
of the slide zones are subjected to an anti-

plane shear stress 

2 2( )ye x aτ

 to arrest the

crack from further opening, where yeτ  is the

yield point shear stress of the strip and x is
any point on the slide zone. Because of
symmetry in geometry and load conditions,
it is sufficient to consider the problem for the
region 0 x h≤ ≤ , 

0 y≤ < ∞

. Fig. 1 below
depicts the schematic presentation of the
configuration of the problem.
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The mathematical model of the above case may be written as follows: The piezoelectric
strip occupies the region  , is cut along an internal crack ,

y=0 {formed of the union of intervals }. The boundary conditions

of the problem mathematically be written as

2

2

V

( ) ( ,0) ( ), 0

( ) ( ,0) 0,

( ) ( ,0) ( ,0) 0

yz ye

x x

x
i x H x a x b

a
ii w x b x h

iii E x E x x a

σ τ= − ≤ ≤

= ≤ ≤
= ≤ ≤

V

( ) ( ,0) 0,

( ) ( ,0) ( ,0) 0

( ) ( , ) 0,

( ) ( , ) 0, .

y y

x

xz

iv x a x h

v D x D x x a

vi D h y for all y

vii h y for all y

φ

σ

= ≤ ≤
= ≤ ≤

=
=

where H( ) denotes Heaviside function. Superscript V denotes that the quantities refer
to vaccum inside the crack.

At infinite boundary, two types of boundary conditions are prescribed:
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Fig. 1 : Schematic presentation of configuration of the problem
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( )  Case I

( , ) ,  and  ( , ) for 0 ,

( )  Case II

( , ) ,  and  ( , ) for 0 ,

yz y

yz y

viii

x y D x y D x h y

ix

x y E x y E x h y

σ τ

σ τ

∞ ∞

∞ ∞

= = ≤ ≤ → ∞

= = ≤ ≤ → ∞

For each case, the desired potentials ( , )w x y  and ( , )x yφ  are obtained using

equations (10, 11) determining 

( )iA α

, ( )iB α   (i=1, 2) and a∞ , b∞  using the prescribed

conditions of the problem.

Solution for Case I: The constants a∞ , b∞  are determined employing the boundary

condition (viii) using (10, 11) together with equations (3-6) as

11 15 44 15
2 2

44 11 15 44 11 15

and (12)I Ie D c D e
a b

c e c e

ε τ τ
ε ε
∞ ∞ ∞ ∞

∞ ∞
+ −= =

+ +
Superscript I denote that the quantities refer to the Case I.

Following two sets of dual integral equations are obtained for determining ( )iA α  and

( )iB α  (i=1, 2) using boundary conditions (i to iv) together with equations (10, 11)

( ) ( ){ } ( ) ( ) ( ){ } ( )44 1 15 1 44 2 15 2

0

2

2

2
cos cosh

( ) , 0 (13)ye

c A e B x c A e B x d

x
H x a x b

a

α α α α α α α α
π

τ τ

∞

∞

⎡ ⎤+ − +⎣ ⎦

= − − ≤ ≤

∫

( ) ( )1

0

cos 0 , (14)A x d b x hα α α
∞

= ≤ ≤∫

( ) ( )1

0

cos 0 , (15)B x d a x hα α α
∞

= ≤ ≤∫

( ) ( )1

0

sin 0 , 0 (16)B x d x aα α α α
∞

= ≤ ≤∫

Two new functions ( )1ϕ ξ  and ( )2ϕ ξ  are introduced to determine 1( )A α  and 1( )B α
as
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12

1 1 0
44 0

( ) ( ) ( ) (17)
2

b
A J b d

c

πα ξ ϕ ξ αξ ξ= ∫
12

1 2 0
44 0

( ) ( ) ( ) (18)
2

a
B J a d

c

πα ξ ϕ ξ αξ ξ= ∫

Equation (18) together with equation (16) yields 1( ) 0B α = . Unknown functions 2( )A α

and 2 ( )B α  are determined using edge boundary conditions (vi and vii) and 1( ) 0B α = .

These may finally be given as

2 12 2
0

2
( ) ( )sin( ) , (19)

sinh( )

s
A A sh ds

h s

αα α
πα α α

∞

=
+∫

2 ( ) 0. (20)B α =
Boundary conditions (vi and vii) and equations (13, 17) yield following Fredholm's integral

equation of the second kind to determine ( )1ϕ ξ :

( )
1

1 1

0

2
2 2 1

2

( ) ( , )

,
(21)

cos , 1ye

k d

a

b
b a b a a

a b a b b

ϕ ξ ϕ η ξ η η

τ ξ ξ
ξτ ξ τ ξ ξ ξπ ξ

∞

−
∞

+

⎧ <⎪⎪ ⎡ ⎤= ⎨ ⎛ ⎞+ − +⎢ ⎥⎪ ⎜ ⎟ < <⎝ ⎠⎢ ⎥⎪ ⎣ ⎦⎩

∫

where kernel ( ),k ξ η  is

( ) ( )
/

0 0

0

, ( ) ( ) (22)
sinh

h ae
k I I d

h a

ααξ η ξη αη αξ α
α

∞ −

= − ∫

Note that 0( )I  denotes zero order modified Bessel's function of the first kind.

Consequently 1( )A α  is also determined.

Solution for Case II : The arbitrary constants a∞ , b∞  for this case are determined

using boundary condition (ix) and may be written as-

15

44

and (23)II IIe E
a b E

c

τ ∞ ∞
∞ ∞ ∞

+= =
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Superscript II denotes that the quantities refer to Case II. The unknown functions ( )iA α

and ( )iB α  (i = 1, 2) remain same as in Case I.

Applications
Stress intensity factor, slide zone and crack sliding displacement

Sliding mode stress intensity factor, ( )IIIK b , at the tip x = b is obtained using the

expression

( ) { 2 ( ) ( ,0)} (24)III yz
x b

K b Lim x b xπ σ
+→

= −

Sliding mode stress intensity factor for both the Cases I and II, at the tip x = b is given
by

( ) 1(1). (25)IIIK b bπ ϕ=

The condition that the crack stops propagating at x = b yields a transcendental equation
to determine the slide zone length from

2 1 2 2 2 ( )
cos , (26)

ye

a S h a
b a b a a

b

τπ
τ

− ∞
⎛ ⎞−⎛ ⎞ + − = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

where 

1

1

0

( ) ( ) ( , ) .S h a k dϕ η ξ η η= ∫        (27)

Relative crack sliding displacement, ( )IIICSD x , for the rims of the crack is given by

2
2 2 2 1 2

2
44

3 2 2
1

2 22 2

4
( ) 1

. (28)

ye
III

a a

x x

a b
CSD x b b x Cos a

c a b a

a c
Cos d a d

xx

τ
π

α αα α α
α αα

−

−

⎡⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞⎢= − + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣
⎤⎧ ⎫−⎪ ⎪⎛ ⎞ ⎥− +⎨ ⎬⎜ ⎟ −⎝ ⎠ ⎥−⎪ ⎪⎩ ⎭⎦

∫ ∫

Fatigue crack growth rate
Assuming that the results of static loading conditions can be applied to cyclic loading

conditions by making the substitution

0
0, ,

2 2 ye yc c ycand D
τ ττ τ τ τ γ τ∞

∆ ∆→ → → =
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where 2 1τ τ τ∆ = − ; 1 2 and τ τ  represent minimum and maximum applied shear stress

at zero electrical loads; ycτ  is the cyclic yield strength; cD  denotes the critical value of

accumulated plastic displacement.

The fatigue crack growth rate, 
da

dN
, under small-scale yielding may be written as-

( )4

2
44

(29)
192 III

yc

da
K

dN c

π
γ τ

= ∆

where

( ){ }2 . (30)IIIK S h a aτ π∆ = ∆ −

Case Study
Case study has been presented for crack opening and fatigue crack growth rate for

piezoelectric ceramics, PZT-4 and PZT-5H.  The material properties of the ceramics are
presented below in Table 1.

 PZT-4 PZT-5H

c 44 (1010N/m2) 2.56 2.3

e 15 (C/m2) 12.7 17

ε11 (10-10C/Vm) 64.6 150.4

Material constants Ceramics

Table1: Material constants

The material constants are taken from Narita et al. (2001).
Fig. 2 depicts the variation of crack growth rate as the width of strip is increased for

Case I. It may be observed that as the strip width increases, the crack growth rate decreases.

Also, it may be noted that as the value of the ratio 44 15 0 0 44 11( ) ( )c e D cτ ε  is increased from

, crack growth rate is considerably reduced.
Similar variation of crack growth rate is plotted for case II in Fig.3. In this case also,

the crack growth rate reduces and stabilizes as the width of the strip is increased. The crack

growth rate becomes independent of ceramic properties. As the ratio 15 0 0( )e E τ  increases

from -0.25 to 0.5, the crack growth rate reduces further.



75

Generalised Strip Yield Crack Arrest Model for a Piezoelectric Strip with Transverse Crack

1 1.5 2 2.5 3 3.5 4
0

20

40

60

strip width to crack length ratio, h/a

N
o

rm
a

lis
e

d
 s

tr
e

ss
 in

te
n

si
ty

 f
a

ct
o

r 
ra

n
g

e
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
[ 

∆K
II

I /
 ∆

τ 0( π
 a

)1
/2

]4   

PZT 4
PZT 5H

Case I
c

44
e

15
D

0
/τ

0
c

44
ε

11
= -0.25

0

0.25

0.5

Fig. 2 : Variation of crack growth rate versus strip width to crack length ratio, for
Case I
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Figures 4 & 5 show the variation of crack growth rate as slide zone to crack length

ratio, ( )b a a− , is increased for Cases I and II respectively. It can be seen that crack growth
rate is almost ten times higher for Case I as compare to that for Case II. The crack growth

rate decreases in both the cases for higher values of the ratio, ( )b a a− . For Case II, the
crack growth rate is independent of ceramic properties. However for Case I, it is dependent

on ceramic properties. As the ratio  is increased from , the crack

growth for Case I reduces and the variation for different ceramics narrows down and for the
value of this ratio equals to 0.5, the variation for both the ceramics overlaps and becomes

uniformly constant. In Fig. 5, different curves are drawn for the ratio 15 0 0( )e E τ  varying from.

For this case also, as the ratio 15 0 0( )e E τ  assumes positive higher values, the crack growth

reduces and becomes uniformly constant.
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Conclusion
Using linear theory of piezoelectricity, a

strip yield model is proposed in this paper to
arrest the growth of a semi-stationary crack.

Applicability of the model is extended
to study the crack growth under cyclic
loading. The variation of crack growth rate
with respect to width of strip and slide zone
length is studied. The results conclude that
the crack opening is arrested and the crack
growth rate reduces if the proposed model
is employed.
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